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ABSTRACT 

In a warming world, dry years will become drier, and wet years will become wetter. With this, it is important 

that we analyze extreme rainfall events by estimating the probability distribution of rainfall amount, since the shape 

and tails of these distributions give more impact in analysis instead of simple average of rainfall totals. Analysis of 

uncertainty in future climate is best approached by probabilistic risk assessment using the concept of return period or 

recurrence interval of a single day hydrologic event such as extreme daily rainfall that causes floods. 

In this paper, we estimate the return levels of extreme rainfall amounts in Legaspi City by employing a non-

parametric approach. For future periods, LARS-WG was used to simulate future climate in Legaspi under RCP 4.5 

and RCP 8.5 greenhouse gas emission scenarios. In each simulated data, probability distribution of annual maxima 

was estimated by non-parametric kernel estimation and using cross-validation as the bandwidth selection procedure. 

The results revealed that if the emission of greenhouse gas will not be controlled in the next decades, high 

magnitude single day rainfall amounts will be more frequent in Legaspi in terms of annual occurrence by the end of 

the century. Single day rainfall magnitudes with 5-year, 25-year, 50-year, and 100-year return periods under the 

different climate change scenarios are presented, which can then be used by disaster scientists for flood modeling. 

1. INTRODUCTION 

1.1. Significance and Motivation 

In the past half century, the Philippines have been stricken by multiple typhoons that costed property damages 

and fatalities. According to the Climate Change Vulnerability Index, the Philippines is named one of the Asian 

countries that face extreme risks from natural disasters. Recently, several natural disasters such as the Taal Volcano 

eruption, Typhoon Molave (Quinta), and Typhoon Goni (Rolly), Typhoon Vamco (Ulysses) were some of the most 

destructive disasters in 2020, resulting in human casualties and property destructions. 

Historically, Bicol is one of the regions that experience the first destructions caused by typhoons, with it facing 

the Pacific Ocean. Some of the typhoons that crossed the Bicol Region before the year 2000 are Typhoon Emma in 

1967, Typhoons Kelly and Lynn in 1981, Typhoon Babs in 1998, among others. 

In Legazpi, the highest rainfall amount recorded by the PAGASA weather station was 484.6 mm, observed on 

November 3, 1967, during the Typhoon Welming (Emma). 

 

Figure 1. Track map of Typhoon Welming (Emma), October 31 – November 8, 1967 

Source: National Institute of Informatics (Japan) 



 

In more recent decades, tropical cyclones that crossed the Bicol Region are Tropical Storm Juaning 

(international name Nockten) in 2011, Tropical Storm Salome (Haikui) in 2017, and Super Typhoon Rolly (Goni) in 

2020, all bringing extreme rainfall amounts in the region. 

NOAA data shows that the Legaspi weather station had recorded the highest daily rainfall of 2020 on October 

26, 2020, during the onslaught of Quinta (Molave), with 282 mm amount of rainfall. According to a report by 

DSWD, Bicol Region, among the other PH Regions affected, has the greatest number of people affected by 

Typhoon Quinta in 2020. The typhoon also caused agricultural damage in Bicol of up to ₱286 million (US$5.9 

million). 6,671 of houses were damaged and 243 of them were destroyed.  

We are interested in knowing the frequency of occurrence of these extreme rainfall events in the future under 

different climate change scenarios guided by a goal of building a resilient city. Analysis of uncertainty in future 

climate is best approached using the probabilistic risk analysis using the concept of return period or recurrence 

interval of a hydrologic event such as rainfall that causes floods. Hydrologic events for n-years, (e.g., 5-, 25-, 50-, 

and 100-year) have specific applications in engineering hydrology such as drainage management, flood control, etc.  

 

1.2. Goals and Objectives 

The overarching goal of this study is to assess the frequency of extreme daily rainfall events in Legaspi in terms 

of return periods. This paper mainly applies non-parametric procedures in estimating the return levels.  

 Specifically, this paper aims: 

• To determine 2-year, 50-year, and 100-year precipitation return levels using the historical data and future 

simulated data. 

• To characterize trends of the extreme rainfall magnitude in the 21st century under different climate change 

scenarios 

 

1.3. Scope and Limitations 

This study is focused only on the application of non-parametric estimation of return levels using data for 

Legaspi weather station. Additionally, limitation of data includes being extracted from an unofficial data source, 

NOAA’s ftp server. Multiple blank and invalid data points were found but were removed and estimated by 

interpolation methods. 

  



2. RELATED LITERATURE 

2.1. Extreme value theory and Return Levels 

Analysis of rainfall data strongly depends on its distribution pattern. It has long been a topic of interest in the 

fields of meteorology in establishing a probability distribution that provides a good fit to daily rainfall. (Sharma and 

Singh, 2010). The famous statistician R.A Fisher was one of the pioneers in this field by studying the influence of 

rainfall on the yield of wheat in Rothamsted and showing that instead of total rainfall amount, the distribution of 

rainfall during a season influences the crop yield. Particularly, statistics of extremes plays a very important role in 

flood frequency analysis (e.g. Adamowski, 2000). 

There are two primary approaches to analyzing extremes of a dataset: block maxima and peaks-over-threshold. 

The first approach reduces data considerably by taking maxima of long blocks of data, e.g. annual maxima. The 

second approach analyzes excesses over a high threshold. Coles (2001) wrote a good book on the subject, where he 

defined concepts used in the topic. 

The Generalized Extreme Value (GEV) distribution has theoretical justification for fitting block maxima, while 

the Generalized Pareto (GP) distribution provides the theory on peaks-over-threshold (POT). 

The Generalized Extreme Value Distribution is given by 
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In dealing with hydrological extremes, block maxima of rainfall, as described by Chow et al. (1988) or Khaliq 

et al. (2006), is one of the most natural ways. The annual maxima series (AMS), which consists of one maximum 

value from each year of record, is used to fit a GEVD. 

However, for short historical rainfall series, the use of AMS results to a small sample size which are unsuitable 

for further analyses. Another approach to modelling hydrological extremes is using the partial duration series (PDS), 

or sometimes called peaks-over-threshold (POT) as previously mentioned. 

For the case of the POT approach, a threshold of exceedance can be approximated by the Generalized Pareto 

Distribution (GPD).  Let 𝑋 be a random variable and 𝑢 a high enough threshold. Then the distribution of the 

exceedance 𝑥 − 𝑢 conditional on 𝑋 exceeding 𝑢, 0 ≤ 𝑢 < 𝑥, can be approximated as follows 

𝐺(𝑥 − 𝑢) = 1 − [1 + 𝜉 (
𝑥 − 𝑢

𝜎
)]

+

−
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scale parameter 𝜎 > 0 and shape parameter 𝜉 ∈ ℝ. Again, the shape parameter determines the type of 

distribution function (with the same interpretations as the GEV df): heavy tail when 𝜉 > 0 (Pareto), upper bound 

when 𝜉 < 0 (Beta), and exponential in the limit as 𝜉 → 0. 

It is usually more convenient to interpret these extreme value models in terms of quantiles or return levels, 

rather than the individual parameter values 𝜇, 𝜎, 𝜉 (Coles, 2001). 



Suppose a time series random variable 𝑋 that is observed every 𝑇 time intervals and has a cumulative 

distribution function 𝐺∗ (commonly an extreme value distribution). Let 𝑥𝑝 be the upper 𝑝 quantile, where 𝑝 = 1 −

𝐺∗(𝑥𝑝), i.e. 𝑃(𝑋 ≥ 𝑥𝑝) = 𝑝. 

The return period of the value 𝑥𝑝 is 
1

𝑝
, which can be interpreted as “the number of 𝑇 periods in which the value 

𝑥𝑝 is expected to be observed once”. 

Related with return period is the return level 𝑥𝑇 which is the expected amount to be exceeded once every 𝑇 

interval. Mathematically, it can be defined as 𝑥𝑇 = 𝐺∗
−1 (1 −

1

𝑇
). 

For example, if we take the GEVD as the cdf 𝐺∗, the 
1

𝑝
 period return level is obtained as 

𝑧𝑝 = {
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𝜉
[𝑦𝑝

𝜉
− 1] for 𝜉 ≠ 0
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where 𝑦𝑝 = −1/ln (1 − 𝑝) 

For the GPD, the formulation of 𝑚-observation return level is as follows 

𝑥𝑚 = 𝑢 +
𝜎

𝜉
[(𝑚𝜍𝑢)𝜉 − 1)] 

From these concepts, estimating the return level requires estimating the distribution function 𝐺∗ with �̂�∗. 

Recent advancements also introduced new procedures in analyzing extremes in hydrology, such as applying 

bootstrap methods in fitting general extreme value models on rainfall data written in the works of Saeb (2014) and 

Gilleland (2020). While MLE is perfectly valid estimator of the parameters in an EV distribution, alternatives such 

as profile likelihood (Gilleland and Katz, 2016) and bootstrap methods are appealing for constructing confidence 

intervals especially for the case that return levels exceed the temporal range of the data (e.g. 100-year return level 

with only 20 years of data) 

Furthermore, since uncertainties in precipitation can be caused by other climate variables, Kim et.al (2022) 

proposed a novel procedure for extreme value modeling by using large scale climate indices as covariates of extreme 

rainfall quantiles, which is relevant given that there are proofs that nonstationary climate due to climate change 

influence the estimated return levels (Cooley, 2013; Alipour and Leal, 2019). 

 

2.2. Nonparametric estimation 

Parametric estimation requires certain assumptions such as knowing the distribution of the data. If we choose a 

parametric model that is not of appropriate form, then there is a danger of reaching incorrect conclusion. Current 

flood frequency analysis methods assume that that flood observations come from known pdf, but in hydrological 

context, the population distribution is not known exactly (Kim and Heo, 2001). 

Recently, nonparametric density methods have gained popularity in different fields of science, including 

hydrology. These methods have the advantage of not requiring assumptions about the distribution of the population 

of interest (Faucher, et.al, 2001). 

Let 𝑋 be a continuous random variable, with probability density function (pdf) 𝑓 and cumulative distribution 

function (cdf) 𝐹. Given a sample of data 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛, the kernel estimator or the Parzen-Rosenblatt estimator 

(Parzen, 1962) of the density 𝑓 is defined by 

𝑓ℎ(𝑥) =
1

𝑛
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where 𝐾 is the kernel (a nonnegative function), and ℎ > 0 is bandwidth parameter that determines the degree of 

smoothing.  Using the relationship between the pdf and cdf, the kernel estimator of the distribution function is given 

by 

�̂�ℎ(𝑥) = ∫ 𝑓ℎ(𝑡)
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𝑑𝑡 =
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where 𝐻(𝑢) = ∫ 𝐾(𝑡)𝑑𝑡
𝑥

−∞ 
 

Other well-known nonparametric estimator of the distribution function is the empirical distribution (Reiss, 

1981) 

𝐹𝑛(𝑥) =
1

𝑛
∑ 𝐼{𝑋𝑖≤𝑥}

𝑛

𝑖=1

=
number of 𝑥𝑖  less than or equal to x

𝑛
 

Since Parzen and Rosenblatt’s study, multiple investigations about the kernel density estimators has been done 

(Scott, 1979; Bowman, 1985; Terell and Scott, 1985; Silverman, 1986; Terell, 1990). However, these theoretical 

results are asymptotic in nature and will require large samples, hence raising questions on their performance for 

small samples. Bandwidth selection methods were also discussed by Marron (1989), Sheater (1992), Jones et.al. 

(1992), and Park and Turlach (1992). 

Annual maxima and minima have also been estimated via nonparametric estimators. From the context of kernel 

estimator, we can use the kernel distribution function to estimate percentiles to a given probability of exceedance. 

Yakowitz (1983) and Adamowski and Feluch (1983) introduced the kernel method in hydrology. We still use the 

definition of 𝑇 period return level 

�̂�𝑇 = �̂�∗
−1 (1 −

1

𝑇
) 

where �̂�∗ is the estimated distribution function using a kernel estimator. 

However, in hydrology context, bandwidth selection methods for the density estimators have been improperly 

used. Faucher et al. (2001) highlighted this issue then proposed a new bandwidth estimator derived from cumulative 

distribution function and the properties of the quantile estimator instead of the density function. Kim and Heo (2002) 

emphasized that while many studies have utilized bandwidth estimators, literature still fail to determine which 

bandwidth selection method is the best. 

Other than the use of kernel estimators for rainfall data, bootstrap methodologies were also introduced to 

estimate distributions, motivated by availability of short-time series (Holešovský et.al., 2016) or uncertainties in 

rainfall due to spatial interpolation (Zhang et.al 2017) 

Quintela-del-Rio (2011) further pointed out the common mistakes in dealing with statistical problems in 

hydrology but nonetheless supported the use nonparametric methods in dealing with annual maxima flood series, 

given that the only perceived disadvantage of nonparametric methods so far is the higher demand in computational 

time. 

Other than the estimation of the distribution, kernel estimators are also used in interpolating missing 

hydrological data points. Lee and Kang (2015) concluded that the kernel approaches provide higher quality of 

interpolation than Kth nearest neighbor regression approach. 

  



2.3. Climate Change and the Representative Concentration Pathways 

In climate change projections, the Representative Concentration Pathways (RCP) from the International Panel 

for Climate Change (IPCC) 5th Assessment Report (AR5) are used to describe the future world based on different 

driving forces: human activities, policies, and greenhouse gases (GHG) emissions. 

The RCPs represent the range of GHG emissions; they include a stringent mitigation scenario (RCP 2.6), two 

intermediate scenarios (RCP 4.5 and RCP 6.0), and one scenario with very high GHG emissions, or also called the 

“Business-as-usual scenario” (RCP8.5). 

 

Figure 2. GHG emission pathways (IPCC, Climate Change 2014) 

When it comes to precipitation magnitudes, according to AR5, changes in precipitation in a warming world is 

not uniform. Areas that are on the high latitudes and equatorial Pacific regions (such as the Philippines) are likely to 

experience an increase in annual mean precipitation by the end of the 21st century under the RCP 8.5 scenario, while 

a decrease is projected over mid-latitude and subtropical dry regions. 

It is also projected that extreme precipitation events are very likely to be more intense and frequent over most 

mid-latitude land masses and over wet tropical regions by the end of the century as global mean surface temperature 

increases. 

 

Figure 3. Changes in average precipitation (IPCC, Climate Change 2014) 

In the Philippines, DOST-PAGASA and Manila Observatory released a report on Philippine Climate Extremes for 

2020, in a goal to present information on historical and projected annual climate extremes in the country. 

Precipitation extremes have a distinct spatial variability. In Albay, where Legaspi City is located, the total rainfall 

amount on extremely wet days tends to be higher by the end of the century, especially under RCP 8.5. 

  



3. METHODOLOGY 

3.1. Data 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Location of Legazpi weather station 

The daily rainfall and temperature data were extracted from NOAA through 

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/. However, note that this data is not officially from PAGASA and there are 

some blank or erroneous data points. For the solar radiation, hourly data is extracted from SOLCAST API Toolkit, 

then the average of the hourly data will be used to represent the solar radiation for a specific day. Table 1 

summarizes the definition of the variables, units used, year range of the data available, and the sources. 

Table 1. Data definition and Sources 

Variable Definition 
Units 

Year range Source 
Original Converted 

PRCP 
Total precipitation (rain and/or melted snow) 

reported during the day 
Inches millimeter 

1973 – 2020 

 

NOAA 

 

TEMP 
Mean temperature for the day in degrees Fahrenheit 

to tenths. 
Fahrenheit Celsius 

MIN Minimum temperature reported during the day Fahrenheit Celsius 

MAX Maximum temperature reported during the day Fahrenheit Celsius 

GHI 

Global Horizontal Irradiance: The total irradiance 

received on a horizontal surface. It is the sum of 

direct and diffuse irradiance components received on 

a horizontal surface. 

W/m2 
MJ

m2
/day 2007-2020 Solcast 

 

  

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/


3.1.1. Removing invalid data points 

PAGASA’s official report on climatological extremes shows that within 1903 to 2020, Legazpi weather station 

has recorded minimum and maximum temperatures at 13.9℃ and 37.7℃ respectively, and the greatest daily rainfall 

amount recorded is 484.6 mm. These will serve as the upper and lower bounds of the data. Values that are outside 

these are removed. 

3.1.2. Filling the missing datapoints 

Rainfall and Mean Temperature 

Now, since there are missing data points, we perform imputation and estimation procedures for those missing 

days. For now, we will just perform a simple linear interpolation for the precipitation PRCP and daily mean 

temperature TEMP using the na_interpolation function in the imputeTS package in R. 

Max and Min Temperature 

For the Max and Min Temperatures, a different imputation approach will be used due to the constraint 𝑚𝑖𝑛 <

𝑚𝑒𝑎𝑛 < 𝑚𝑎𝑥. Simple interpolation on max and min data will sometimes violate this constraint. 

The values of the maximum and minimum temperatures move along with the mean temperature. We can model 

the daily max and min based on their distance from the daily mean temperature. For this, we will obtain two other 

variables, the daily temperature ranges in terms of the differences 𝑇𝑚𝑎𝑥−𝑚𝑒𝑎𝑛  and 𝑇𝑚𝑒𝑎𝑛−𝑚𝑖𝑛 , estimate the missing 

differences �̂�𝑚𝑎𝑥−𝑚𝑒𝑎𝑛  and �̂�𝑚𝑒𝑎𝑛−𝑚𝑖𝑛  by linear interpolation, then recompute the values: 

�̂�𝑚𝑎𝑥 =  𝑇𝑚𝑒𝑎𝑛 + �̂�𝑚𝑎𝑥−𝑚𝑒𝑎𝑛  

�̂�𝑚𝑖𝑛 =  𝑇𝑚𝑒𝑎𝑛 − �̂�𝑚𝑒𝑎𝑛−𝑚𝑖𝑛 

Solar Radiation 

For the Solcast dataset of Solar Radiation variable, imputation will not work if we estimate data before 2007. A 

Generalized Linear Model with gaussian family with logarithmic link based on temperature range (Max-Min) and 

monthly seasonality can be used to estimate the daily solar radiation for the years before 2007. The log link ensures 

that the estimated value of solar radiation will always be positive. 

 

Figure 5. Generated Historical Monthly Mean Radiation using the estimated model 

  



 

3.2. Non-parametric Estimation of Return Levels 

Analysis of uncertainty in future climate in best approached using the probabilistic risk analysis using the 

concept of return period or recurrence interval of a hydrologic event such as rainfall that causes floods. 

In estimating return levels, the annual maxima will be used, and then a distribution function must be estimated 

using this data. We can estimate the distribution function using non-parametric methods, specifically by a kernel 

estimation procedure. The kernel estimator for the probability density function 𝑓 is given by 

𝑓ℎ(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑥𝑗)

𝑛
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where 𝐾ℎ(𝑢) =
1

ℎ
𝐾 (

𝑢

ℎ
) with 𝐾 kernel function and ℎ is the bandwidth parameter. 

From this, kernel estimator for the cumulative distribution function 𝐹 can be constructed: 

�̂�ℎ(𝑥) = ∫ 𝑓ℎ(𝑥)𝑑𝑥
𝑥

−∞

=
1

𝑛
∑ 𝐻 (

𝑥 − 𝑥𝑗

ℎ
)

𝑛
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where 𝐻(𝑥) = ∫ 𝐾(𝑡)𝑑𝑡
𝑥

−∞
 

For this procedure, two choices will be made, the kernel function 𝐾 and the bandwidth ℎ. 

The kerdiest  package in R provides the 4 kernels. Epanechnikov, Normal, Biweight, and Triweight. For this 

study, we will only use the Epanechnikov kernel, since the selection of the kernel is of less importance as different 

functions produce good results (Quintala-del-Rio, Estevez-Perez, 2012). 

On the other hand, bandwidth selection is more crucial because the bandwidth influence the estimator: if the 

bandwidth is small, we will obtain undersmoothed estimator, with high variability. On the contrary, large bandwidth 

will yield to a very smooth estimator farther from the function we are trying to estimate. 

For the bandwidth selection procedure, cross validation by Bowman et.al (1998) will be used as recommended 

by Quintala-del-Rio (2012). For this method, we will select the bandwidth ℎ that minimizes the function 

CV(ℎ) =
1

𝑛
∑ ∫(𝐼(𝑥 − 𝑥𝑖) − 𝐹−𝑖(𝑥))

2
𝑤(𝑥) 𝑑𝑥

𝑛

𝑖=1

 

where 𝐼(𝑥 − 𝑥𝑖) = {
1 if 𝑥 − 𝑥𝑖 ≥ 0
0 o. w

 and 𝐹−𝑖(𝑥) =
1

𝑛
∑ 𝐻 (

𝑥−𝑥𝑗

ℎ
)𝑗≠𝑖  

The CVbw and rl functions of the kerdiest package in R will be used to compute the bandwidth and return 

levels respectively. 

  



 

3.3. Daily Data under Climate Change Scenarios 

Long Ashton Research Station Weather Generator (LARS-WG) is a type of weather generator that simulates 

time series at a single site under different scenarios and different time periods (Semenov, 2012). LARS-WG version 

6 can now generate future daily weather data at different climate change scenarios based on the IPCC 5th 

Assessment Report. More information about LARS-WG can be found on Appendix B. 

LARS-WG assumes that observed climate is stationary. If there are any trends in the observed data, they need to 

be removed, especially on annual total precipitation. Rainfall annual total amounts show an upward linear trend 

from years 1973-2021. Outliers from the years 1982-1988 may have affected this trend. A Mann-Kendall test proves 

that the data is non-stationary with p-value = 0.002941. 

 

Figure 6. Annual Precipitation Totals from 1973 to 2021 in Legazpi City 

We cut the data, focusing on years 1991 to 2020. The Mann-Kendall test now does not reject the null that the 

data is stationary, with p-value = 0.080391. The data for the years 1991 to 2020 may serve as the historical data and 

can now be stored in LARS-WG for site analysis. 

Simulation experiments will be conducted for the scenarios RCP 4.5 and RCP 8.5, and for the period 2021-

2040, 2041-2060, 2061-2080, and 2081-2100.  100 years’ worth of daily data that follow the properties of the 

historical data will be generated for each scenario and periods.  

For this paper, we will use the available IPSL-CM5A-MR GCM from the LARS Weather Generator to simulate 

daily data at different scenarios. For the rationale of the GCM choice, Ruan et al. (2018) analyzed 34 CMIP5-GCMs 

for precipitation over the Lower Mekong basin, Southeast Asia. Among their top 5 GCMs, IPSL-CM5A-MR is the 

only one included in LARS-WG. 

By using a weather generator, a reanalysis dataset can be used as quasi-observations to generate climate data in 

lieu of actual observations. The generated data will be used for the non-parametric estimation of the return levels.  

3.4. Methodological Framework 

 



4. RESULTS AND DISCUSSION 

4.1. Historical and Generated Baseline Data 

Maximum single day rainfall ever recorded within the time frame of the historical data was on Nov 7, 2017, 

with 437.642 mm of rainfall while the average daily annual maxima is 209.84 mm. 

 

Figure 7. Annual Rainfall Maxima time series from 1991 to 2020 

After storing the historical data to the weather generator, LARS-WG outputs a Kolmogorov-Smirnov (KS) test 

to show that this generated synthetic baseline data follows the same daily rain distribution as the observed historical 

daily data: 

Table 2. KS test for daily rain distributions 

Low p-value (<0.05) indicates that generated climate is unlikely to be the same as the observed climate 

 

 

 

 

 

 

 

 

 

 

Annual Rainfall Maxima were also reproduced well by LARS-WG. A KS test still shows that the annual 

maxima for the historical and generated 100 years’ worth of baseline data follow the same distribution (p-value = 

0.5965). 

  

Month Effective n KS Statistic p-value 

January 11.5 0.221 0.572 

February 11.5 0.320 0.153 

March 11.5 0.206 0.661 

April 11.5 0.126 0.988 

May 11.5 0.082 1.000 

June 11.5 0.054 1.000 

July 11.5 0.146 0.952 

August 11.5 0.129 0.985 

September 11.5 0.158 0.913 

October 11.5 0.053 1.000 

November 11.5 0.243 0.449 

December 11.5 0.147 0.949 



We estimate the density function using the Rosenblatt-Parzen kernel estimator and cross-validation bandwidth 

selection by Bowman et.al with Normal kernel function. 

The obtained value for the bandwidth using the historical data is 37.37 while the bandwidth for the generated 

baseline data is 20.39. The following graphs are the density curves and distribution functions of the historical and 

synthetic data: 

 

Figure 8. Kernel estimated Density function and Cumulative Distribution function using historical data (1991-2020) 

 

Figure 9. Kernel estimated Density function and Cumulative Distribution function using synthetic baseline data 

In analyzing extreme scenarios in terms of return levels, it is interesting to note that the behavior of the tail of 

the distribution is the most important, specifically the 80th quantile (5-year return period event) and above up to 99th 

quantile (100-year return period event). 

After estimating the distributions, the 𝑇-period return levels are now as follows: 

Table 3. Estimated return levels using non-parametric approach 

 

 

 

 

For the next parts, future scenarios are generated using the GCM provided by LARS-WG, and the estimation 

procedure is the same (non-parametric estimation of return levels). 

  

Return Period Historical Baseline (generated) 

5-year 285.62 290.22 

25-year 386.64 375.92 

50-year 431.07 396.64 

100-year 437.64 404.10 



4.2. Future Scenarios 

4.2.1. RCP 4.5 

Figure 10. Kernel estimated Density function of future annual rainfall maxima under RCP 4.5 scenario 

 

 

Table 4. Estimated rainfall return levels in Legaspi under RCP 4.5 using non-parametric approach 

 

Figure 10. Trend of return levels in Legaspi under RCP 4.5 

 

Under RCP 4.5, magnitude of extreme events will peak at 2061-2080 and a projected downward trend by the 

end of the century.  
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5 year 25 year 50 year 100 year

Return Period Baseline 2021-2040 2041-2060 2061-2080 2081-2100 

5-year 290.22 319.09 335.67 349.05 337.48 

25-year 375.92 387.80 404.92 418.99 401.77 

50-year 396.64 411.92 424.37 440.92 425.23 

100-year 404.10 440.99 443.91 468.77 453.88 



4.2.2. RCP 8.5 

Figure 11. Kernel estimated density functions of future annual rainfall maxima under RCP 8.5 scenario 

 

Table 5. Estimated rainfall return levels in Legaspi under RCP 8.5 using non-parametric approach 

 

Figure 12. Trend of return levels in Legaspi under RCP 8.5 

 

Under RCP 8.5 or the Business-as-usual greenhouse gas emission, extreme events will bring increased 

magnitudes. For instance, if previously, a 5-year event brings 290 mm of rain, by the end of the century, a 5-year 

event will bring 388 mm of rainfall.  
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5 year 25 year 50 year 100 year

Return Period Baseline 2021-2040 2041-2060 2061-2080 2081-2100 

5-year 290.22 315.26 333.51 360.35 388.23 

25-year 375.92 381.98 408.50 436.14 458.88 

50-year 396.64 404.44 435.15 455.68 482.31 

100-year 404.10 431.47 464.96 476.83 511.80 



 

5. SUMMARY: Comparison of RCP 4.5 and RCP 8.5 

For brevity, we focus on Mid (2041-2060) and Late (2081-2080) future periods in the 21st century in 

comparing the effects on rainfall magnitude under the two RCP scenarios. From the table and graph below, it can be 

observed that that rainfall magnitudes under RCP 8.5 are higher than under RCP 4.5 at different return periods. 

Table 5. Estimated rainfall return levels in Legaspi in the Mid and Late futures 

Return period Baseline 
Mid (2041-2060) Late (2081-2100) 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

5-year 290.22 335.67 333.51 337.48 388.23 

25-year 375.92 404.92 408.50 401.77 458.88 

50-year 396.64 424.37 435.15 425.23 482.31 

100-year 404.10 443.91 464.96 453.88 511.80 

 

Figure 13. Return level plots of extreme rainfall in Legaspi 

 

For example, if previously, a 400 mm of rainfall is a at least a 60-year event, by the end of the century, this 

amount will not be as rare as before. It will be a 24-year event under RCP 4.5 and a 6-year event under RCP 8.5. 

Figure 14. Trend of 100-year return levels of extreme rainfall in Legaspi 

 

Extreme events will bring increased rainfall magnitudes in the coming decades, and high rainfall amounts will 

be more frequent in terms of annual occurrence. While an increase in magnitude of rainfall extremes can also be 

observed even under the controlled GHG emission scenario (RCP 4.5), difference in effects is still significant 

compared to the Business-as-usual scenario (RCP 8.5), especially on the late century period. 

400

420

440

460

480

500

520

Baseline 2021 - 2040 2041 - 2060 2061 - 2080 2081 - 2100

R
ai

n
fa

ll 
M

ag
n

it
u

d
e 

(m
m

)

Period

Trend of 100-year Return levels

RCP 4.5 RCP 8.5



6. CONCLUSION AND RECOMMENDATIONS 

Magnitudes of extreme rainfalls in Legaspi 

By the end of the century, it is expected that extreme rainfalls will bring higher magnitude in Legaspi. The 

estimated return levels in the coming decades will be higher under the Business-as-usual scenario (RCP 8.5) than the 

mitigated scenario (RCP 4.5). This also means that previous rare events or longer return period (low probability of 

exceedance) such as a 400 mm rainfall will be more frequent (higher probability of exceedance) if global emission 

of greenhouse gases are not controlled at a certain level. If mitigation of GHG emissions cannot be done, the 

resiliency in the city can be improved by preparing for single day high rainfall amounts in terms of planning water 

flow to avoid flash floods. 

The values presented can be used by disaster scientists in flood modelling and mapping for risk assessment.  

Assessment of Non-parametric Estimation of Return Levels 

In studying extreme annual daily maxima of rainfall amounts, using non-parametric estimation of the 

distributions have a benefit. For one, the event of daily annual rainfall maximum at higher levels (around 400 mm 

for the historical data) are more frequent than the events of recording annual maxima between 350-390, but peaks on 

the frequency can also be observed at around 200 mm-250 mm rainfall values. This can cause multi-modality, as 

seen in the histograms of rainfalls under the historical, baseline, and different climate scenarios, which the known 

probability distributions fail to address. Considering multimodality in the center part of the probability distribution is 

important if we want to address shorter return period events. There is great utility in modelling lower scenarios such 

as 5, 10, and 25-year rainfall return periods as these are the type of events that people tend to experience more often. 

However, non-parametric estimation of extremes also has limitations. Method discussed on this paper will fail 

to extrapolate more extreme events especially when we want to estimate 100 year, 200-year, 500-year and above 

return levels given that data is short. Return levels are bounded by the range of the data, unlike if we use a known 

probability distribution such as Generalized Extreme Value, Pearson type III, Exponential distribution, etc., the 

asymptotic tails of these distributions fix the issue of extrapolating rarer events. Estimating higher return periods is 

relevant in planning major infrastructures such as dams that are expected to endure rainfalls for at least 100 years. 

For future studies, it is recommended to further assess non-parametric method of estimating return levels by 

analyzing variance and bias and formally comparing against the parametric methods. 
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APPENDIX A: Important Concepts 

This appendix provides definitions of some concepts introduced in this paper. These provides context about the 

processes in analyzing climate change. Definitions are extracted from A Review of Downscaling Methods For 

Climate Change Projections by Tzsaka and Schnarr (2014) 

1. GCM 

General or global circulation models (GCMs) are the simplified 

representation of the earth’s climate system simulating the physical 

processes of atmosphere and ocean. 

A GCM is composed of many grid cells with estimated climates via 

mathematical equations that describe atmospheric, oceanic, and biotic 

processes, interactions, and feedbacks. Each modeled grid cell is 

homogenous (i.e., within the cell there is one value for a given 

variable). 

GCMs can also provide quantitative estimates of future climate 

change that are valid at the global and continental scale and over long 

periods by changing important parameters (such as greenhouse gas 

emissions and solar radiation).  

2. Downscaling 

Although GCMs are valuable predictive tools, most GCMs have 

spatial resolution of approximately 200 km (~2° × 2°) which makes it 

hard to consider fine-scale heterogeneity due to local climate 

variability and complexity of topography. 

To overcome such a limitation, downscaling techniques can be 

performed to translate a coarse horizontal resolution to a finer 

resolution while considering regional and local climate variability. 

Two main types of downscaling are Dynamical and Statistical 

Downscaling. 

a. Dynamical Downscaling 

Relies on the use of a Regional Climate Model (RCM), similar to a 

GCM in principles but with higher resolution. 

RCMs take large-scale information supplied by GCM output, then 

incorporates more complex topography, the land-sea contrast, surface 

heterogeneities, and detailed descriptions of physical processes. 

b. Statistical Downscaling 

Relies on establishing relationships between large-scale 

atmospheric variable and local observed climate variables, 

such as those observed at weather stations. 

Once a relationship has been determined and validated, 

future atmospheric variables that GCMs project are used to 

predict future local climate variables. 

The use of weather generators (such as LARS-WG which 

is used in this study) is a type of statistical downscaling. 

 

Conceptual framework of Statistical Downscaling 

Downscaling Concept 

GCM Concept 



APPENDIX B: LARS-WG 

Long Ashton Research Station Weather Generator (LARS-WG) is a stochastic weather generator and a 

computationally inexpensive downscaling tool to generate local scale climate scenarios based on global or regional 

climate models for impact assessments of climate change (Semenov, 2020). LARS‐WG has been used in more than 

75 countries for research and education. 

It utilizes semi-empirical distributions for the lengths of wet and dry day series, daily precipitation, and daily 

solar radiation. Synthetic weather data is then generated by combining these statistical characteristics with a scenario 

file that contains information about changes in the climate variables. The semi-empirical distribution 𝐸𝑚𝑝 =

 { 𝑎0, 𝑎𝑖;  ℎ𝑖 , 𝑖 = 1, . … ,10} is a histogram with ten intervals, [𝑎𝑖 − 1, 𝑎𝑖),where 𝑎𝑖 − 1 <   𝑎𝑖 , and ℎ𝑖 denotes the 

number of events from the observed data in the 𝑖𝑡ℎ interval. Random values from the semi-empirical distributions 

are chosen by first selecting one of the intervals (using the proportion of events in each interval as the selection 

probability), and then selecting a value within that interval from the uniform distribution. 

The current version 6.0 of LARS‐WG incorporates climate projections from the CMIP5 ensemble used in the 

IPCC 5th Assessment Report. LARS‐WG has been well validated in diverse climates around the world. 

 

Data to be stored to Long Ashton Research Station Weather Generator (LARS-WG) 

(1).*.st file: structure of the data;  (2)*.dat file: data to be used; and (3) sample interface of LARS-WG 

   

Sample interface of LARS-WG when generating 100 years’ worth of daily weather using IPSL-CM5A-MR 

(1) Under RCP 4.5 centered on 2050; (2) Under RCP 8.5 centered on 2090 

 



 

APPENDIX C: R Codes 

The following are the important R codes used in this paper. Only samples are presented. Full codes, functions, 

and data will be accessible in the author’s GitHub page (https://github.com/slcodia ) in the future. 

 

Getting bandwidth using cross-validation bandwidth by Bowman, et.al (1998) 

bw.CV <- kerdiest::CVbw(vec_data = legaspi_max$MAX.PRCP) 

bw.CV$bw 

[1] 37.37771 

 

Plotting Histogram and PDF 

hist.pdf <- ggplot(legaspi_max, aes(x = MAX.PRCP))+ 

    geom_histogram(aes(y = ..density..),  

                   binwidth = 40,fill="white", colour = "black")+ 

    stat_density(bw = bw.CV$bw, kernel = "gaussian",  

                 geom="line",linetype = "dashed",  

                 size = 1)+ 

    theme_bw()+xlab("Max Precipitation") 

hist.pdf 

 

 

5-year, 25-year, 50-year, and 100-year Return Levels using Non-parametric Kernel Estimation 

kerdiest::rl(type_kernel = "n",  

             vec_data = legaspi_max$MAX.PRCP, 

             bw = bw.CV$bw, 

             T = c(5,25,50,100)) 

[1] 285.6196 386.6361 431.0655 437.6393 

  



Return Level plot 

# Preparing Data 
rl.kerdiest <- data.frame(x = c(2:100), 

              baseline_baseline = rl(type_kernel = "n",  

                     vec_data = base.max$MAX.PRCP, 

                     T  = c(2:100),  

                     bw = kerdiest::CVbw(vec_data = base.max$MAX.PRCP)$bw), 

              RCP45_Mid = rl(type_kernel = "n",  

                     vec_data = RCP45_mid$MAX.PRCP, 

                     T  = c(2:100),  

                     bw = kerdiest::CVbw(vec_data =RCP45_mid$MAX.PRCP)$bw), 

              RCP45_Late = rl(type_kernel = "n",  

                     vec_data = RCP45_late$MAX.PRCP, 

                     T  = c(2:100),  

                     bw = kerdiest::CVbw(vec_data = RCP45_late$MAX.PRCP)$bw), 

              RCP85_Mid = rl(type_kernel = "n",  

                     vec_data = RCP85_mid$MAX.PRCP, 

                     T  = c(2:100),  

                     bw = kerdiest::CVbw(vec_data = RCP85_mid$MAX.PRCP)$bw), 

              RCP85_Late = rl(type_kernel = "n",  

                     vec_data = RCP85_late$MAX.PRCP, 

                     T  = c(2:100),  

                     bw = kerdiest::CVbw(vec_data = RCP85_late$MAX.PRCP)$bw) 

                     ) 

rl.kerd <- reshape2::melt(rl.kerdiest, id = 'x', value.name = "return 

level")%>%splitstackshape::cSplit(splitCols = 'variable', sep="_", 

type.convert=FALSE) 

colnames(rl.kerd) <- c('x', 'return level', 'RCP', 'period') 

 

# Actual Plot 

ggplot(rl.kerd, aes(x=x, y = `return level`, color = RCP, linetype = 

period))+ 

    geom_line(size = 1)+ 

    scale_color_manual(values = c("baseline" = "green", 

                                  "RCP45" = "blue", 

                                  "RCP85" = "red"))+ 

    scale_linetype_manual(values = c("baseline" = "dotted", 

                                     "Mid" = "dashed", 

                                     "Late" = "solid"))+ 

    theme_bw()+ 

    xlab("Return Period")+ 

    ylab("Rainfall Magnitude (mm)")+ 

    ggtitle("Rainfall Magnitudes in Mid (2041-2060) and Late (2081-2100) 

futures") 
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